融合知识图谱与大语言模型的储能领域知识推荐研究
DOI:
CSTR:
作者:
作者单位:

1.南京工程学院管理工程学院;2.南京工程学院电力工程学院、沈国荣学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家社科基金项目:大数据环境下学术成果真实价值与影响的实时预测及长期评价研究(编号:19BTQ062);江苏高校哲学社会科学研究重大项目:研究方法的跨学科流动路径及其学科驱动力研究(编号:2024SJZD066);江苏省高校“青蓝工程”’优秀青年骨干教师项目资助。


Research on Knowledge Recommendation in the Energy Storage Domain Integrating Knowledge Graphs and Large Language Models
Author:
Affiliation:

1.School of Management Engineering, Nanjing Institute of Technology;2.School of Electrical Power Engineering (Shen Guorong College) Nanjing Institute of Technology

Fund Project:

National Social Science Fund Project: Research on Real-time Prediction and Long-term Evaluation of the True Value and Impact of Academic Achievements in the Big Data Environment (Project Number: 19BTQ062); Major Project of Philosophy and Social Science Research in Jiangsu Universities: Research on the Interdisciplinary Flow Path of Research Methods and Their Disciplinary Driving Forces (Project Number: 2024SJZD066); Supported by the "Qinglan Project" of Jiangsu Universities for Outstanding Young Backbone Teachers.

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    “双碳”目标对储能领域的高质量发展提出了更高要求,亟待对储能相关领域的知识开展充分的挖掘与利用,开展面向特定场景的精准知识推荐服务。本研究提出了一种融合大语言模型与知识图谱的储能知识推荐方案:兼顾储能领域专利的可获得性及权威性确定数据来源,从元数据及文本细粒度两个维度出发将储能领域的实体划分为8种类型,通过实验对比多种机器学习模型,选取最优模型完成实体抽取任务,基于实体关系模版生成三元组实现储能领域知识图谱的构建;构建普通问答、专利推荐和知识组合推荐3种回答策略,借助大语言模型的强大语义理解与生成能力,自动化地从知识图谱中获取与用户问题相关的信息,完成领域知识的精准推荐任务。以超导储能领域的实证研究结果表明,本研究所构建的方法在单目标推荐、双目标推荐、知识组合推荐及混合推荐4类任务上均优于传统的LLM-KB方法,在ROUGE-L和BLEU-4指标上相较于传统的LLM-KB方法分别提升了20.47%和16.57%。本研究融合知识图谱与大语言模型技术为储能领域知识精准推荐提供了新的思路,提升了用户获取高质量知识的效率与效果。

    Abstract:

    The "dual carbon" goals place higher demands on the high-quality development of the energy storage sector, necessitating the thorough exploration and utilization of knowledge in related fields, as well as the provision of precise knowledge recommendation services for specific scenarios. This study proposes a knowledge recommendation solution for the energy storage domain that integrates large language models and knowledge graphs. By considering both the availability and authority of data sources for energy storage patents, the study categorizes entities in the energy storage domain into eight types based on two dimensions: metadata and text granularity. Various machine learning models are compared experimentally, and the optimal model is selected for entity extraction. A knowledge graph for the energy storage domain is constructed based on entity-relation templates to generate triples. Three response strategies are developed: general Q A, patent recommendation, and knowledge combination recommendation. Leveraging the powerful semantic understanding and generation capabilities of large language models, the system automatically retrieves relevant information from the knowledge graph to fulfill precise domain knowledge recommendation tasks. Empirical results from the superconducting energy storage field demonstrate that the proposed method outperforms traditional LLM-KB methods in four types of tasks: single-target recommendation, dual-target recommendation, knowledge combination recommendation, and hybrid recommendation. The proposed method improves ROUGE-L and BLEU-4 scores by 20.47% and 16.57%, respectively, compared to traditional LLM-KB methods. This study provides new insights into precise knowledge recommendations for the energy storage domain by integrating knowledge graphs and large language models, enhancing the efficiency and effectiveness of user access to high-quality knowledge.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-19
  • 最后修改日期:2025-02-19
  • 录用日期:2025-03-17
  • 在线发布日期:
  • 出版日期:
文章二维码
关闭