融合知识图谱与大语言模型的储能领域知识推荐研究
CSTR:
作者:
作者单位:

1.南京工程学院管理工程学院,江苏 南京, 211167 ;2.南京工程学院电力工程学院、沈国荣学院,江苏 南京, 211167

作者简介:

徐浩,博士,副教授,研究方向为信息智能处理与检索、信息分析与科学评价。E-mail:xhnjit@njit.edu.cn

通讯作者:

中图分类号:

TP391;G203

基金项目:

国家社科基金项目“大数据环境下学术成果真实价值与影响的实时预测及长期评价研究”(19BTQ062);江苏高校哲学社会科学研究重大项目“研究方法的跨学科流动路径及其学科驱动力研究”(2024SJZD066);江苏省高校“青蓝工程”优秀青年骨干教师资助项目;江苏省研究生科研与实践创新计划项目(TB202517026)


Exploration of Knowledge Recommendation within the Energy Storage Domain Integrating Knowledge Graphs and Large Language Models
Author:
Affiliation:

1.School of Management Engineering, Nanjing Institute of Technology, Nanjing Jiangsu 211167 , China ; 2.School of Electric Power Engineering, School of Shenguorong, Nanjing Institute of Technology, Nanjing 211167 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    “双碳”目标对储能领域的高质量发展提出了更高要求,亟待对储能相关领域的知识开展充分的挖掘与利用,开展面向特定场景的精准知识推荐服务。本研究提出了一种融合大语言模型与知识图谱的储能知识推荐方案:兼顾储能领域专利的可获得性及权威性确定数据来源,从元数据及文本细粒度两个维度出发将储能领域的实体划分为8种类型,通过实验对比多种机器学习模型,选取最优模型完成实体抽取任务,基于实体关系模版生成三元组实现储能领域知识图谱的构建;构建普通问答、专利推荐和知识组合推荐3种回答策略,借助大语言模型的强大语义理解与生成能力,自动化地从知识图谱中获取与用户问题相关的信息,完成领域知识的精准推荐任务。超导储能领域的实证研究结果表明,本研究所构建的方法在单目标推荐、双目标推荐、知识组合推荐及混合推荐4类任务上均优于传统的LLM-KB方法,在ROUGE-L和BLEU-4指标上相较于传统的LLM-KB方法分别提升了20.47%和16.57%。本研究融合知识图谱与大语言模型技术为储能领域知识精准推荐提供了新的思路,提升了用户获取高质量知识的效率与效果。

    Abstract:

    The “dual carbon” objectives impose elevated standards for the high-quality advancement of the energy storage sector, necessitating a comprehensive exploration and utilization of knowledge pertinent to this domain. There exists an urgent demand for precise knowledge recommendation services tailored to specific scenarios. This study proposes an innovative knowledge recommendation framework that synergizes large language models with knowledge graphs within the realm of energy storage: it judiciously considers both the accessibility and authority of patents within this field to ascertain data sources. By categorizing entities within the energy storage sector into eight types across two dimensions—metadata and text granularity—the rigorous experiments comparing various machine learning models to identify the most effective model for entity extraction tasks have been conducted. Leveraging entity relationship templates, the triples are generated to facilitate the construction of a knowledge graph specifically relevant to energy storage. Three sophisticated response strategies have been proposed: general question answering, patent recommendations, and knowledge combination suggestions. By harnessing the formidable semantic comprehension and generative prowess of large language models, the approach automates the extraction of pertinent information from the knowledge graph in response to user inquiries, thereby facilitating precise recommendations within specialized domains. Empirical research findings in superconducting energy storage reveal that the innovative approach surpasses traditional LLM-KB methods across four task categories: single-target recommendation, dual-target recommendation, knowledge combination recommendation, and hybrid recommendation. Specifically, compared with conventional LLM-KB approaches, enhancements of 20.47% and 16.57% were recorded in ROUGE-L and BLEU-4 metrics, respectively. This study integrates methodologies from both knowledge graphs and large language models to provide novel insights into accurate recommendations within the energy storage sector, while improving users efficiency and effectiveness in acquiring high-quality information.

    参考文献
    相似文献
    引证文献
引用本文

徐浩,康振渊,张焱,金卫健,华崇基.融合知识图谱与大语言模型的储能领域知识推荐研究[J].南京工程学院学报(社会科学版),2025,25(1):82-90.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-09
  • 出版日期:
文章二维码
关闭