基于多变量LSTM模型对昆士兰州的电力负荷预测
CSTR:
作者:
作者单位:

作者简介:

朱振涛,博士,副教授,研究方向为管理科学与工程、社会化媒体营销。E-mail:zztnit@163.com

通讯作者:

中图分类号:

TP183;TM715

基金项目:

国家自然科学基金(71471084,71402071,71571099);江苏省高校哲学社会科学优秀创新团队建设项目(2017ZSTD025);《电能计量技术》一流课程建设项目(3224108220082)


Power Load Forecasting for Queensland Based on LSTM Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在目前中国的南方电力市场的电量偏差考核机制下,拥有更准确的电力负荷预测技术的售电企业在现在的中长期市场中将会有更少的偏差电量,从而获得成本更低的竞争优势。 为了探究在成熟的电力现货市场下,对电力负荷预测有影响的因素有哪些以及如何使用预测模型实现更好的电力负荷预测精度的问题,通过文献梳理归纳出影响电力负荷四类因素:历史负荷数据、气象因素、时间因素、经济因素,构建了考虑多变量因素的长短期记忆网络(LSTM)电力负荷预测模型,以澳大利亚昆士兰州为算例进行预测分析,结果表明基于 LSTM 的电力负荷预测方法误差相比较于基于 ARIMA 模型的电力负荷预测方法的误差更低,预测效果更好。 而在影响因素当中,算例结果比较显示日期类型对电力负荷预测预测结果影响最强,其次是电价因素,最后是最低与最高温度。 该预测方法在相似于美国的 PJM 电力市场中也可以使用。

    Abstract:

    Under the current power deviation assessment mechanism of China & aposs southern power market, electricity sales companies with more accurate power load forecasting technology will have less deviation power in the current medium and long-term market, to gain a competitive advantage at a lower cost. In order to explore what factors have influence on the power load forecasting and how to use the forecasting model to achieve better power load forecasting precision in the mature power spot market, four kinds of factors affecting electric load are summarized: historical load data, meteorological factors, time factors and economic factors. The load forecasting model for long-term and short-term Memory Network ( LSTM) which takes consideration of multi-variable factors is constructed. Taking Queensland, Australia, as an example for prediction analysis, the results show that the error of power load forecasting method based on LSTM is lower than that of the power load forecasting method based on ARIMA model, and the prediction effect is better. Among the influencing factors, the comparison of the results of the calculation examples shows that the date type has the strongest influence on the forecasting results of power load forecast, followed by the electricity price factor, and finally the minimum and maximum temperatures. This prediction method can also be used in the PJM power market similar to the United State.

    参考文献
    相似文献
    引证文献
引用本文

朱振涛,陆思豪.基于多变量LSTM模型对昆士兰州的电力负荷预测[J].南京工程学院学报社会科学版,2022,23(1):62-71.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-10
  • 出版日期:
文章二维码
关闭